US009330116B2

a2z United States Patent (10) Patent No.: US 9,330,116 B2
Heng et al. 45) Date of Patent: May 3, 2016
(54) DETERMINING HIERARCHICAL PATHS TO 8,775,433 B2* 7/2014 Greenetal. ... 707/741
NODES 2005/0076312 Al* 4/2005 Gardneretal. . .. 715/853
2007/0016605 Al* 1/2007 M_urthy etal. ..o 707/102
(71) Applicant: Oracle International Corporation, 588;;85222; i} ;ggg; I((}iéc;lzft al.
Redwood Shores, CA (US) 2009/0276733 Al* 11/2009 Manyametal. 715/854
2011/0093467 Al* 4/2011 Sharpetal. 707/741
(72) Inventors: Lijie Heng, Redwood Shores, CA (US);
Chi Ching Chui, Redwood Shores, CA OTHER PUBLICATIONS
(US); Yi Ouyang, Redwood Shores, CA
us) Haifeng Jiang et al., XParent: An Efficient RDBMS-Based XML
Database System, 2002, 2 pages.™
(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Jean B Fleurantin
U.S.C. 154(b) by 294 days. (74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP
(21) Appl. No.: 13/832,691
(22) Filed: Mar. 15,2013 (57) ABSTRACT
(65) Prior Publication Data Methods, machines, and stored instructions are provided for
US 2014/0280363 A1l Sep. 18, 2014 determining hierarchical paths to nodes based on stored infor-
mation about the nodes. A node analyzer analyzes a hierarchy
(51) Int.ClL to create mappings that represent the hierarchy. The map-
GO6F 17/30 (2006.01) pings may include a “parent mapping” that maps selected-
(52) US.CL level nodes to parent nodes of the selected-level nodes, and a
CPC ... GO6F 17/30289 (2013.01); GO6F 17/30221 “path mapping” that maps a plurality of nodes other than the
(2013.01); GO6F 17/30327 (2013.01) selected-level nodes to a plurality of paths, within the hierar-
(58) Field of Classification Search chy, to the plurality of nodes. A path module then determines
CPC et GO6F 17/30286 path(s) to specified node(s) at least in part by mapping the
USPC 707/741, 770, 778, 802; 715/234, 713, specified node(s) to particular parent node(s) of the specified
715/853, 854 node(s) using the parent mapping. The path module also maps
See application file for complete search history. the particular parent node(s) to particular path(s) using the
. path mapping. The information from the path and parent
(56) References Cited

U.S. PATENT DOCUMENTS

7,627,547 B2
8,176,084 B2*

12/2009 Jain et al.
5/2012 Chowdhurycc..c.... 707/797

SECOND-LEVEL
NODE(S) 204

THIRD-LEVEL

NODE(S)&{

REPRESENTATION OF A
HIERARCHY OF NODES 200

mappings may be assembled to form path(s) within the hier-
archy to the specified node(s).

26 Claims, 6 Drawing Sheets

LEAF NODE(S) 208

U.S. Patent

May 3, 2016

Sheet 1 of 6

FIG. 1

US 9,330,116 B2

RECEIVE A REQUEST THAT IDENTIFIES PARTICULAR
NODE(S) IN A HIERARCHY OF NODES

100

MAP THE
PARTICULAR

WHICH PARENT

INFORMATION IS STORED?

102

ARE THE PARTICULAR
NODE(S) ON A LEVEL FOR

MAP THE
PARTICULAR

NODE(S) TO
PARENT

NODE(S)
104 ‘

MAP THE PARENT
NODE(S) TO PATH(S)
WITHIN PART OF THE
HIERARCHY
106

NODE(S) TO
PATH(S) WITHIN
PART OF THE
HIERARCHY
107

IS THE PART BELOW A

LEVEL FOR WHICH PARENT
INFORMATION IS STORED?

108

I
MAP THE ROOT(S) MAP THE
OF THE PATH(S) IN PARENT
THE PART TO MAP THE NODE(S) TO
NODE(S) ON A NODE(S) ON PATH(S)
LEVEL FOR WHICH|,,| THELEVEL | J| WITHIN PART
PARENT INFO IS TO PARENT OF THE
STORED NODE(S) HIERARCHY
110 112 114

RESPOND TO THE REQUEST BASED ON PATH(S) TO THE

PARTICULAR NODE(S)

116

U.S. Patent May 3, 2016 Sheet 2 of 6 US 9,330,116 B2

FIG. 2

REPRESENTATION OF A
HIERARCHY OF NODES 200

TOP-LEVEL NODE(S) 202

SECOND-LEVEL
NODE(S) 204

THIRD-LEVEL

NODE(S@—{

LEAF NODE(S) 208

U.S. Patent May 3, 2016 Sheet 3 of 6 US 9,330,116 B2

FIG. 3

COMPUTER SYSTEM(S) 300

(" DATA REPRESENTING NODE HIERARCHY |

k(17)
|

NODE ANALYZER 304

STORAGE DEVICE(S) 306

/ DATABASE STRUCTURE 308A. \

TARGFET-LEVEL NODE PARENT

DI Cl
D2 Cl
D3 Cl
D4 Cl,C2
D5 C2

/ DATABASE STRUCTURE 308B \

PAIR OF NODES PATH(S) BE E DE

A, Bl A/Bl

Bl, C1 B1/C1

A, CI A/B1/C1, A/B2/C1

A, B2 A/B2

B2, Cl B2/C1

A, B3 A/B3

B3, C2 B3/C2

\A, 2 A/B3/C2 /

U.S. Patent May 3, 2016 Sheet 4 of 6 US 9,330,116 B2

FIG. 4

REPRESENTATION OF A
HIERARCHY OF NODES 400

TOP-LEVEL
NODE(S) 402

SECOND-LEVEL
NODE(S) 404

SELECTED-LEVEL
NODE(S) 408

SIXTH-LEVEL ° } LEAF

NODE(S) 414 NODKE(S) 416

) @

U.S. Patent

May 3, 2016 Sheet 5 of 6 US 9,330,116 B2
FIG. 5
COMPUTER SYSTEM(S) 500

DATA REPRESENTING NODE HIERARCHY 502

-

NODE ANALYZER 504
|
STORAGE DEVICE(S) 506
4 DATABASE STRUCTURE S08A. N\
TARGET-LEVEL NODE PARENT CHILD
DI Cl El
D2 Cl B
D3 Cl B
D4 ClL, C2 E2. B3
DS C2 3

Q, 2 A/B3/C2

/ DATABASE STRUCTURE 508B
PAIR OF

DES PATH(S) BE E DE.

A, Bl A/B1

Bl, Cl B1/C1

A, Cl A/B1/C1, A/B2/C1

A, B2 A/B2

B2, Cl B2/C1

A, B3 A/B3

B3, C2 B3/C2

AN

El,
FI,
El,
E2,
E2,
E3,
F2,
F2,
E3,

Qs,

/ DATABASE STRUCTURE 508C
PAIR OF NODES PATH(S) BE E DE

Fl El/F1
Gl F1/Gl
Gl El/F1/Gl
Fl E2/F1
Gl E2/F1/G1
F2 E3/F2
Gl F2/G1
G2 A/B3/C2

Gl E3/F2/G1

AN

G2 E3/F2/G2 /

US 9,330,116 B2

Sheet 6 of 6

May 3, 2016

U.S. Patent

k53

Bl EHEME #id
MOLLF N IOS OIS

:35353&\

ot

HIE1HOT
HOSANT

£

(—))

Gl%
FEAI

IoYLE

e

TG

b

AR

Y

9 DI

R

P

S.\S\S:S:S.\e\

US 9,330,116 B2

1

DETERMINING HIERARCHICAL PATHS TO
NODES

TECHNICAL FIELD

The technical field relates to determining hierarchical
paths to nodes based on stored information about the nodes.

BACKGROUND
Hierarchical Data

Computer systems store, manage, and analyze various
types of data. Some types of stored data may include unstruc-
tured data values, which may have little or no relationship to
each other. Other types of stored data may include structured
data values that define a hierarchy. Structured data values
relate to each other based on how or where the values are
stored, how the values are organized or arranged with respect
to each other in storage, references between the values, or
some other stored indication that the values are associated
with different levels in the hierarchy. The hierarchy defined
by structured data values may be equivalent to a tree having
one root or top-level node, a set of distinct trees having many
roots, a set of interconnected trees having many roots, or
some other graph or set of nodes and connections arranged in
levels.

In a structured set of data, different data values are often
represented as “nodes” at different levels in the hierarchy. The
nodes may be connected by edges or links, such as explicit
references or implicit relationships based on the structure, to
one, a few, many, or even all of the other nodes in the graph.
In many structured data sets, nodes are connected to other
nodes that are immediately above or below the nodes in the
hierarchy. A node that is connected to a given node and
positioned immediately above the given node in the hierarchy
is referred to as a “parent” of the given node. The parent and
other nodes that are connected, either directly or indirectly, to
the given node and above the given node in the hierarchy, such
as the parent’s parent (i.e., the given value’s grandparent), are
referred to as “ancestors” of the given node. A node that is
connected to a given node and positioned immediately below
the given node is referred to as a “child” of the given node.
The child and other nodes that are connected, either directly
orindirectly, to the given node and below the given node in the
hierarchy, such as the child’s child (i.e., the given value’s
grandchild), are referred to as “descendants™ of the given
node. In some structured sets of data, nodes higher up in the
hierarchy refer to more general categories such as families or
genera. Nodes lower down in the hierarchy may refer to
species or other examples within the categories. In other
structured sets of data, the hierarchy merely serves as an
example organization of data values, and the levels may be
assigned to the values according to some other reason or even
arbitrarily.

For a given node in a hierarchy, there may be one or
multiple paths that connect the given node to other nodes in
the hierarchy. A path of connections or edges between two
nodes in a hierarchy is referred to as a “hierarchical path.” The
hierarchical path may be defined by any nodes that are
between the two nodes. For example, a first node, “A,” may be
connected to a second node, “B,” which is then connected to
athird node, “C.” An example path from A to C may be A/B/C.
Inthe examples, “A,” “B,” and “C” may be the node values or
may merely be the names of nodes that have other values. For
example, node A may store the value “employees,” and node
B may store the value “Smith,” and node C may store the

10

15

20

25

30

35

40

45

50

55

60

65

2

value “engineer.” The values represented by the nodes may or
may not be related to the hierarchical position of the nodes.

Hierarchical data sets may be stored in any data structure(s)
or stored object(s) that retain the hierarchical information
about the stored values. In one example, different nodes may
be stored as different rows in a table, and these different rows
may each be associated with hierarchical information such as
a hierarchical key that indicates the position of the row within
the hierarchy.

In another example, the different nodes may be stored as
marked, tagged, or labeled data values within a document of
marked-up text. The context for a given data value may be
provided by a single label or a combination of labels, such as
a hierarchical path of labels. In one example, a value of “Tim”
may be prefaced with a label of “Name”. Various markup
signals may be used to distinguish between the data values
and the labels themselves. For example, a label may be
marked with a *“//”, such as in *“//Name Tim,” or a “—"", such
as in “—Name Tim”. In many markup languages such as
XML, the label is provided within angle brackets, such as in
“<Name>Tim.” The end of the data value may also be
marked. For example, the end may be marked with
“</Name>.” The end may also be marked by the beginning of
another label, for example “—Name Tim—Age 25”. The
marked up data may indicate a hierarchical structure such that
a single data value falls under a path of labels, such as in
“<CONTACT><NAME> Tim </NAME></CONTACT>,"
where “Tim” falls under the path of “CONTACT/NAME.”

Data structures that store structured data sets may be tra-
versed, utilizing stored edges or links between nodes, to find
nodes that fall under specified paths. For example, the struc-
tured data sets may be traversed to find nodes under the path
“A/B/C. Traversing a structured data set by jumping from
node to node may be computationally expensive, especially
for longer paths, and such traversal may involve a computa-
tion time that is dependent on the depth of the hierarchy. Each
lookup involves loading information about a node, and fol-
lowing a link from the node to another node; traversal of a
path may involve at least one lookup per level in the path.

Nodes may also be directly identified within data struc-
tures, without traversing the structures from node to node,
based on physical locations or other identifiers associated
with the nodes. For example, a node identified as node “123”
may be located using an index that stores node identifiers and
node locations. As another example, the node may be located
directly using a physical location or virtual location of the
node in storage. This manner of locating nodes does not
account for the path to the node.

Some systems maintain path tables for hierarchical sets of
data. A path table stores all possible paths to each node in the
hierarchy, and the path table may be used to locate a node
based on the path to the node but without traversing the
structure from node to node. For example, the path table may
identify three possible paths, such as “A/B1/C,” “A/B2/C,”
and “A/B3/C,” to a particular node, “C.” A single update to the
hierarchy, such as moving node C up a level to a new position
alongside nodes B1, B2, and B3, may change several paths
that are stored in the path table, such as the paths to node C
and any descendants of node C, and updating these paths is
computationally expensive. Also, storing all possible paths
for every node in the hierarchy may consume more storage
space than the underlying data that the path table represents.
For example, node B1 may be listed in the path table as part of
apossible path to node C, node D, node E, and node F, which
may be at lower levels in the hierarchy.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that

US 9,330,116 B2

3

have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates an example process for determining
path(s) to node(s) in a hierarchy using stored information
about the node(s).

FIG. 2 illustrates an example representation of an example
hierarchy of nodes.

FIG. 3 illustrates example database structures that store
information about the example hierarchy of nodes from FIG.
2, where the leaf nodes are treated as target-level nodes.

FIG. 4 illustrates another example representation of an
example hierarchy of nodes.

FIG. 5 illustrates example database structures that store
information about the example hierarchy of nodes from FIG.
4, where mid-level nodes are treated as target-level nodes.

FIG. 6 illustrates an example computer system on which
example embodiments described herein may be imple-
mented. Although a single instance of the example computer
system is depicted, multiple instances of the example com-
puter system or of various elements thereof may function
together to implement the example embodiments described
herein.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

General Overview

Techniques are described herein for determining hierarchi-
cal paths to nodes based on stored information about the
nodes. These techniques may be implemented as specially
configured computer system(s), particular method(s) imple-
mented by the computer system(s), and/or particular instruc-
tion(s) stored on non-transitory or physical electronic storage
media/medium for implementation by the computer
system(s). For example, the computer systems may include a
combination of stored instructions of a particular type and
hardware configured to execute instructions of the particular
type such that the stored instructions, when executed by the
hardware, cause performance of the particular methods.

In one embodiment, a structured data coordinator operat-
ing on computing device(s) receives, retrieves, loads, main-
tains, or otherwise stores data that defines a hierarchy of
nodes. The structured data coordinator makes the stored data
available to a node analyzer, which analyzes the stored data to
create mappings to be stored in association with the stored
data, to replace the stored data, or to otherwise represent the
hierarchy. The stored mappings may include a “parent map-
ping” that maps selected-level nodes, such as leaf nodes,
nodes at a same depth or height in the hierarchy, or nodes that
share some other characteristics in the hierarchy, to parent
nodes of the selected-level nodes, and a “path mapping” that
maps a plurality of nodes other than the selected-level nodes
to a plurality of paths, within the hierarchy, to the plurality of
nodes. The parent mapping and the path mapping may be

20

25

30

40

45

55

4

stored in different data structures or may be different parts of
the same data structure that maps some nodes just to parents
and other nodes to paths. The stored mappings may serve as
indices to the stored data or may replace the stored data.

The computing device(s) also include processor(s) config-
ured to determine path(s) to specified node(s) based on the
stored mappings. In one embodiment, a request processor,
such as hardware and/or stored instructions operating on the
computing device(s), receives a request that identifies or
specifies node(s) in a hierarchy of nodes. In response to the
request, the request processor causes a path module, such as
hardware and/or stored instructions operating on the comput-
ing device(s), to determine path(s), within the hierarchy, to
the specified node(s) using stored mappings. The path module
determines the path(s) at least in part by mapping the speci-
fied node(s) to particular parent node(s) of the specified
node(s) using a parent mapping that maps a first subset of the
hierarchy, such as nodes on a particular level of the hierarchy,
to parent nodes of the first subset. The path module also maps
the particular parent node(s) to particular path(s), within the
hierarchy, using a path mapping that maps a second subset of
the hierarchy to paths, within the hierarchy, to the second
subset. In one embodiment, the particular path(s) to the par-
ticular parent node(s) that were determined using the path
mapping may be assembled with the connections from the
particular parent node(s) to the specified node(s) that were
determined using the parent mapping to form path(s) within
the hierarchy to the specified node(s).

The path module may then perform responsive action(s)
based at least in part on the path(s) within the hierarchy to the
specified node(s). For example, the path module may store the
path(s) on a non-transitory computer-readable storage
medium as expression(s), such as the example expressions
“A/B1/C” and “A/B2/C” that represent example paths to an
example node “C”. The expression(s) may be stored in asso-
ciation with at least part of the request or in association with
the specified node(s). As another example, the path(s) may be
sent in a message to a client that initiated the request, and the
message may include expression(s) that identify the path(s).
In yet another example, the path module responds to the
request by merely indicating whether or not any path(s) were
found to the specified node.

In another example, the request may check for the exist-
ence of specified node(s) in the hierarchy, and the path, par-
ent, and child mappings may be used to determine whether
the specified node(s) exist. For example, the request may
request a determination of whether any of the specified
node(s) are present among target level nodes such as user
identifiers or leaf nodes, and the path module may respond to
the request by indicating whether or not the specified node(s)
were in the mapping(s) for the target level.

In one embodiment, the request identifies multiple nodes
including a target node and at least one other node. In this
embodiment, the path module may evaluate the request by
using the parent and path mappings to determine paths
between the at least one other node and the target node. The
path module may then respond to the request by storing or
sending an electronic indication of whether or not the at least
one other node is in any path to the target node.

As referred to herein, the “target level” or “selected level”
refers to a level as measured from a top of a hierarchy (such as
a third level from a top of the hierarchy), a level as measured
from a bottom of a hierarchy (such as leaf nodes), or a level
that describes certain nodes with certain characteristics (such
as nodes that correspond to users or privileges, regardless of
the number of ancestors (i.e., the depth of the nodes) or
descendants (i.e., the height of the nodes) in paths to these

US 9,330,116 B2

5

nodes), for which parent and/or child mappings are stored but
which are not included in path mapping(s). Parents or chil-
dren of the target-level nodes are nodes that are directly
connected to the target-level nodes, regardless of whether the
parents or children have the same number of ancestors or
descendants as other parents or children. The target level may
be selected arbitrarily or based on some criteria, such as the
level(s) of the hierarchy having the most nodes. Some hier-
archies may have edges or links that skip over levels such that
not every level is represented in every path. Some hierarchies
may have paths that end at different levels. In these examples,
if levels are measured from the top, leaf nodes may be on
different levels; but, if levels are measured from the bottom,
leaf nodes may be considered to be on the same level even
though there are different numbers of nodes in the paths
between the leaf nodes and the root node(s). In other words, a
path to a fourth-level node from a top-level node may include
fewer than four nodes even if the levels are measured from a
top of the hierarchy. These embodiments may also be accom-
modated using the parent and path mappings and optionally
the child mapping described herein as long as the correct path
and parent and/or child information is stored in the mappings.
Creating a Parent Mapping for a Target Level of Leaf Nodes

In one embodiment, a node analyzer creates an adjacency
list or parent mapping for a target level of nodes in a hierarchy
of nodes. The parent mapping stores parent information for
each node at the target level. The parent mapping may be
stored with a child mapping that includes child information
for each node if the node is not a leaf node.

The parent mapping and child mapping do not store path
information beyond adjacent nodes. For example, the parent
mapping may store links to parents of nodes in the target level,
but the parent mapping does not also store paths to great
grandparents or other non-parent ancestors of the target level.
As another example, the child mapping may store links to
children of nodes in the target level, but the child mapping
does not also store paths to great grandchildren or other
non-children descendants of the target level.

In one embodiment, the node analyzer may create a parent
mapping for the target level of nodes in the corresponding
level of a breadth-first traversal of the hierarchy of nodes. In
another embodiment, the node analyzer modifies or appends
a parent mapping each time the target level is reached in a
depth-first traversal of the hierarchy of nodes. For each par-
ticular node in the target level, the node analyzer may create
the parent mapping for the particular node by storing link(s)
to parent(s) of the particular node in association with the
particular node.

In one example, the node analyzer uses the particular nodes
in the target level as keys to a hash function that maps the
particular nodes to virtual addresses where information is
stored that identifies the parent(s) of the particular nodes. If
the particular nodes or identifiers of the particular nodes are
unique, the mapped-to virtual addresses may also either be
unique or may have a low probability of collision with other
mapped-to virtual addresses. The node analyzer may operate
on top of a virtual address layer that translates virtual
addresses into physical addresses of non-transitory storage
medium/media where the information is actually stored.

FIG. 2 illustrates an example representation of an example
hierarchy of nodes 200 where the leaf nodes 208 are treated as
target-level nodes. As illustrated, representation 200 includes
top-level node(s) 202 (“A”) above second-level node(s) 204
(“B1,” “B2,” and “B3”). Edges 210 connect parent node A to
children nodes B1, B2, and B3. Second-level node(s) 204 are
above third-level node(s) 206 (“C1” and “C2”). Edges 210
connect parent nodes B1 and B2 to child node C1 and parent

20

35

40

45

55

6

node B3 to child node C2. Third-level node(s) 206 are above
leafnode(s) 208 (“D1,” “D2,” “D3,” “D4,” and “D5”). Edges
210 connect parent node C1 to children nodes D1-D4 and
parent node C2 to children nodes D4-D5. In the example,
nodes A, B1, B2, and C1 are ancestors of node D1, and nodes
C2 and D4 are descendants of node B3. In the example, all
nodes are descendants of node A.

FIG. 3 illustrates example database structures that store
information about the example hierarchy of nodes from FIG.
2. Computer system(s) 300 include node analyzer 304, which
analyzes data representing node hierarchy 302. Node ana-
lyzer 304 creates, based on a node hierarchy such as the one
represented in FIG. 2, database structures 308 A and 308B on
storage device(s) 306. The database structures may be tables,
documents, data objects, or any other container for holding
mappings. As shown, database structure 308A stores infor-
mation about parents of target-level nodes D1, D2, D3, D4,
and D5. In the example, each of the target-level nodes is
represented in a different row or line, and one of the target-
level nodes, D4, has two parents listed, C1 and C2. There is no
requirement that every target-level node has a parent, and
there is no limit on the number of parents that any target-level
node may have. Database structures 308B will be discussed in
more detail below with respect to the path mapping.
Creating a Path Mapping for Nodes Above the Target Level

The node analyzer also creates a path mapping for those
nodes that are not in a level for which the parent mapping or
child mapping has been created. In other words, the path
mapping includes information for only a portion of the hier-
archy that is not covered by target level(s). A path mapping
that excludes nodes at the target level(s) may be significantly
smaller in size than a path mapping that covers the entire
hierarchy of nodes. In one example, the path mapping
includes paths from each node in the portion of the hierarchy
to each top-level node in the hierarchy. In another example,
the path mapping includes paths between every pair of nodes
that is connected in the portion of the hierarchy, whether or
not the pair of nodes includes a top-level node.

In one embodiment, the node analyzer creates a path map-
ping for nodes that are not on a target level during a breadth-
first traversal of a hierarchy of nodes. At each level of the
breadth-first traversal, the node analyzer may modify or
append paths ending at evaluated nodes with information
about which nodes are connected to the evaluated nodes at a
next level.

In another embodiment, the node analyzer creates a path
mapping for nodes that are not on the target level during a
depth-first traversal of the hierarchy of nodes. The node ana-
lyzer may add full paths and paths between nodes as the
hierarchy is traversed down the full paths.

In one embodiment, the node analyzer creates the parent
and path mappings during the same traversal of the hierarchy.
In another embodiment, the node analyzer creates the parent
and path mappings in parallel traversals of the hierarchy. The
parent mapping may be created using a breadth-first traversal
of'the target level, and the path mapping may be created using
a depth-first traversal of a subset of the hierarchy that
excludes the target level. In various embodiments, multiple
instances of node analyzers may operate in parallel to build
the parent mapping and/or path mapping. For example, dif-
ferent instances of node analyzers may be responsible for
creating different portions of the path mapping corresponding
to different portions of the hierarchy, and another instance of
a node analyzer may be responsible for creating portions of
the path mapping that connect the different portions of the
hierarchy.

US 9,330,116 B2

7

In one embodiment, instead of storing the actual path
between path endpoints, A and B, in the path table, the path
endpoints are used as inputs to a hash function that provides
a virtual address of a location in storage where the path
between A and B is stored. For example, the node analyzer
may use a hash function to map “A, B” to a pseudo-random
virtual address of a block in memory, and the node analyzer
may store the text-based or value-based path between A and B
in that block in memory. The path module may determine the
path between A and B by retrieving the text-based or value-
based path from the location that is found by hashing “A, B”
to a virtual address. In one embodiment, the node analyzer
and path module operate on top of a virtual address layer that
translates the virtual addresses into physical addresses in
memory.

In FIG. 3, node analyzer 304 stores path information for a
portion of the hierarchy of FIG. 2 in database structure 308B.
As shown, database structure 308B stores path information
for all pairs of nodes that are connected in the same path,
directly or indirectly. The stored path information indicates
that there is only one direct path between nodes A and B1,
nodes B1 and C1, nodes A and B2, nodes B2 and C1, nodes A
and B3, and nodes B3 and C2. The stored path information
also specifies multiple complex paths (i.e., paths that include
more than one connection) that exist between nodes A and C1
(“A/B1/C1” and “A/B2/C1”), and one complex path that
exists between nodes A and C2 (“A/B3/C2”). Although the
path information is organized in terms of pairs of nodes, the
path information may also be organized for each node. For
example, the path information could include the paths from
each node to the top level of the hierarchy without including
the paths to intermediate nodes that are not at the top level.

The target-level nodes, leaf node(s) 208, are excluded from
the path table in database structure 308B because the parent
information for leaf node(s) 208, but not path information, is
stored separately for these nodes in database structure 308A.
Excluding the target-level nodes from database structure
308A greatly reduces the number of node-to-node paths and
thus greatly reduces the amount of space consumed by data-
base structure 308 A. Paths to selected ones of nodes D1-D5
may be constructed by assembling the parents for the selected
nodes from database structure 308A and the paths to those
parents from database structure 308B.

Using the Parent and Path Mappings to Determine Path(s) to
Node(s)

In one embodiment, a request processor receives a request
that identifies node(s), and the request processor causes a path
module to determine path(s) to the identified node(s) using
the stored mappings. The request processor may be connected
to an application programming interface (“API”), graphical
user interface (“GUI”), a network interface, or some other
interface for receiving requests for path determinations. The
request may identify node(s) based on the value(s) of the
node(s). If a node value is unique among the hierarchy of
nodes, then specifying the value may uniquely identify the
node among the nodes in the hierarchy. If the value is not
unique, then specifying a value may identify a set of nodes
matching that value in the hierarchy. In one embodiment,
nodes are located based on values using a value index. The
value index may list node locations or identifiers and node
values, and the list may be sorted based on node values to
improve the lookup time.

The request may also identify nodes based on an identifier
or physical location of the node. Each node value is stored at
a particular location, and the identity of the node may be
determined using the particular location. In one embodiment,
nodes are located based on physical locations or identifiers.

10

15

20

25

30

35

40

45

50

55

60

65

8

The physical locations or identifiers may be used to search the
mappings for occurrences of the nodes in the path, parent, and
child mappings.

FIG. 1 illustrates an example process for determining
path(s) to node(s) in a hierarchy using stored information
about the node(s). The example process may be performed by
computing device(s) that have been specially configured with
software and hardware to perform the steps. For a hierarchy
with leaf nodes as the target-level node where a request iden-
tifies a node in the target level, such as node D4 of FIG. 2, the
process may be simplified into steps 100, 104-106 and 116.
The simplified process includes, in step 100, receiving a
request that identifies particular node(s) in a hierarchy of
nodes, such as node D4 of FIG. 2. In step 104, assuming the
particular node(s) are on the target level for which parent
information is stored, the particular node(s) may be mapped
to parent node(s) using a parent mapping for nodes on the
target level, such as the parent mapping in database structure
308A of FIG. 3, which maps D4 to C1 and C2. Then, in step
106, the parent node(s) from step 104 may be mapped to
path(s) within part of the hierarchy using a path mapping such
as the one in database structure 308B of FIG. 3. If the request
is for full paths to the particular nodes, the paths between A
and C1 (A/B1/C1,A/B2/C1) and A and C2 (A/B3/C2) may be
located in database structure 308B. Assuming the target-level
nodes are leaf nodes, the process may continue to step 116,
the computing device(s) respond to the request based on
path(s) to the particular node(s), such as A/B1/C1/D4, A/B2/
C1/D4, and A/B3/C2/D4 in the example, which may be
assembled from the parent(s) determined in step 104 and the
path(s) to the parent(s) determined in step 106.

If the request specifies particular node(s) above the highest
target level for which parent information is stored, such as
node C1 of FIG. 2, then the parent information is not needed
to determine path(s) to the particular node(s). The process
may include a determination as to whether the particular
node(s) are on a level for which parent information is stored
in step 102. The determination as to whether the particular
node(s) are on the level for which parent information is stored
may include searching parent mapping(s), such as the parent
mapping in database structure 308A, for the particular node.
In this case, in step 107, since the particular node(s) are not on
a level for which parent information is stored, the particular
node may be mapped to path(s) within part of the hierarchy
using the path mapping such as the one in database structure
308B of FIG. 3. In the example, the path mapping indicates
two paths between A and C1 (A/B1/C1 and A/B2/C1). The
process may then continue to step 116, in which the path(s)
from step 107 are used to perform a responsive action.
Creating Parent and Child Mappings for a Target Level that
Includes Non-Leaf Nodes

In one embodiment, the selected-level nodes of the parent
mapping are non-leaf nodes in the hierarchy, and the stored
mappings also include a “child mapping” that maps child
nodes of the non-leaf nodes to the non-leaf nodes themselves.
In one example, the child mapping is provided in a same
database structure as the parent mapping. The structure may
have three columns, a first of which specifies different nodes
among the selected-level nodes, a second of which specifies
parents of the different nodes, and a third of which specifies
children of the different nodes.

FIG. 4 illustrates another example representation of an
example hierarchy of nodes 400, where a certain level of
non-leaf nodes 408 is treated as the target level. As shown, an
upper subset of three levels of nodes is the same as the
hierarchy of FIG. 2, and the selected level of node(s) 208 and
408 are the same except that the selected level 408 in FIG. 4

US 9,330,116 B2

9

includes non-leaf nodes. Unlike the hierarchy in FIG. 2, the
hierarchy in FIG. 4 also includes a lower subset of three levels
of' nodes. Although three levels are shown, subsets of nodes
that are not on the target level may include any number of
levels. Fifth-level of node(s) 412 (“E1,” “E2,” and “E3”) is
directly under selected level of node(s) 408. In the example,
node E1 is a child of node D1, node E2 is a child of nodes
D2-D4, and node E3 is a child of nodes D4 and D5. Sixth-
level of node(s) 414 (“F1” and “F2”) is below fifth-level of
node(s) 412. As shown, node F1 is a child of nodes E1 and E2,
and node F2 is a child of node E3. In FIG. 4, leaf node(s) 416
are not a selected level of nodes and are below sixth-level
node(s) 414. In other examples, multiple levels of nodes may
be selected for creation of parent mappings. As shown in FIG.
4, node G1 is a child of nodes F1 and F2, and node G2 is a
child of node F2.

FIG. 5 illustrates example database structures 508A, 508B,
and 508C that store information about the example hierarchy
of' nodes from FIG. 4. Node analyzer stores parent and child
information for target level nodes in database structure 508 A.
In the example, target level node D4 has two parents, C1 and
C2, that are specified in the parent mapping and two children,
E2 and E3, that are specified in the child mapping. The
remaining target level nodes have a single parent and a single
child listed in the mappings. Different nodes in the target level
may have different numbers of parents or children, and some
nodes may have no parents and/or no children in different
example hierarchies. Database structures 508B and 508C are
discussed in more detail below with respect to the path map-
pings for nodes below and above the target level.

Creating Path Mappings for Nodes Below and Above the
Target Level

The stored mappings may include both an “upper path
mapping” that maps a first plurality of nodes above the
selected-level nodes to a plurality of paths in an upper hier-
archy ofnodes to the first plurality of nodes, and a “lower path
mapping” that maps a second plurality of nodes below the
selected-level nodes to a plurality of paths in a lower hierar-
chy of nodes to the second plurality of nodes. The bottom-
level nodes in the upper hierarchy are the parent nodes of the
selected-level nodes, and the top-level nodes in the lower
hierarchy are the child nodes of the selected-level nodes.

As shown in FIG. 5, node analyzer 504 stores path infor-
mation for an upper subset of nodes in database structure
508B (i.e., nodes that are above the target level) and path
information for a lower subset of nodes in database structure
508C (i.e., nodes that are below the target level). Although
only one target level and two subsets are shown in FIG. 5,
multiple target levels and multiple subsets of nodes between
the target levels may be used. In the illustrated example, both
subsets of nodes that are represented in database structures
508B and 508C exclude the target level nodes, which are
represented in the parent mapping rather than the path map-
pings. The contents of database structure 508B is the same as
the contents of database structure 308B in FIG. 3 because the
upper subset of nodes represented by database structure 508B
is the same as the subset of nodes represented by database
structure 308B.

Database structure 508C includes a listing of node pairs in
the lower subset of nodes. For each pair, the database struc-
ture includes a path between the pair. Most of the listings
include direct paths between the pairs of nodes. The pairs (E1,
G1), (E2, G1), (F2, G2), (E3, G1), and (E3, G2) include
complex paths that pass through an intermediate node.
Although none of the listings in database structure 508C
include multiple paths, different hierarchies may include
lower subsets of nodes that do have multiple paths. Also,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

although the table lists all pairs of nodes that are connected in
the lower subset, the table could just list connections between
the top-level of the lower subset (the fifth-level node(s) 412)
and the other nodes in the lower subset (the sixth-level
node(s) 414 and leaf node(s) 416).

Using the Parent, Child, and Path Mappings to Determine
Path(s) to Node(s)

In one embodiment, a request is received for a path to
specified node(s) that are below a level for which a parent
mapping exists. In other words, the specified node is a descen-
dant of node(s) at the level for which the parent mapping
exists. In this embodiment, the path module may determine
lower path(s) by using a path mapping to map the specified
node to child node(s) of the node(s) that are at the level for
which the parent mapping exists. The child node(s) may then
be mapped to the node(s) that are at the level for which the
parent mapping exists using a child mapping. The path mod-
ule then uses the parent mapping to determine parent(s) of the
node(s) that are at the level for which the parent mapping
exists, and another path mapping to determine upper path(s)
to the parent(s). The path module may then assemble the
upper path(s), the node(s) that are at the level for which the
parent mapping exists, and the lower path(s) to determine
path(s) through the hierarchy to the specified node(s).

As shown in FIG. 1, a request may identify particular
node(s) in a hierarchy of nodes, such as F1 in FIG. 4. In this
example, a lower part of the hierarchy contains the particular
node(s). The lower hierarchy is defined as the hierarchy con-
taining nodes E1-E3, F1-F2, and G1-G2. The path(s) within
the lower hierarchy may be determined as if the lower hier-
archy was an upper hierarchy in either in step 106 or step 107.
In the example, the path(s) within the lower hierarchy are
determined in step 107 because node F1 is not on a level for
which parent information is stored, as determined in step 102.
In the example, the path(s) to F1 in the lower hierarchy may be
determined using database structure 508C, which indicates
both E1/F1 and E2/F1 map to F1. Because the path is below
a level for which parent information is stored, as determined
in step 108, a complete path within the full hierarchy of nodes
containing A, B1-B3, C1-C2, D1-D5, E1-E3, F1-F2, and
(1-G2 has not yet been determined for the particular node(s),
such as F1 in the example.

Inthe illustrated embodiment, the hierarchy may include at
least two parts, one of which is above a level for which parent
information is stored (for example, including A, B1-B3,
C1-C2) and one of which is below a level for which parent
information is stored (for example, including E1-E3, F1-F2,
G1-G2). In this case, root(s) of the path(s) from the part that
was evaluated in step 108, such as E1 and E2 in the paths
E1/F1 and E2/F1, may be mapped to node(s) on a level for
which parent information is stored using a child mapping for
the level in step 110. In the example, node E1 is mapped to
node D1 and node E2 is mapped to nodes D2-D4 using the
child mapping in database structure S08A. Then, the node(s)
from step 110 (for example, D1-D4) may be mapped to parent
node(s) using a parent mapping for the level in step 112, such
as the parent mapping in database structure S08A. In the
example, the parent mapping maps D1-D3 to C1 and D4 to C1
and C2. In step 114, the parent node(s) from step 112 (for
example, C1 and C2) are mapped to path(s) within a part of
the hierarchy using a path mapping for another portion of the
hierarchy, such as the upper hierarchy containing nodes A,
B1-B3, and C1-C2 in FIG. 4. In the example, C1 is mapped to
A using two paths, A/B1/C1 and A/B2/C1, and C2 is mapped
to Ausing one path, A/B3/C2. The part determined in step 114
(for example, A/B1/C1, A/B2/C1, A/B3/C2) is above the part
determined in either step 106 or step 107 (for example, E1/F1

US 9,330,116 B2

11

and E2/F1), but the part is not necessarily at the top of the
hierarchy. The process then returns to step 108 to determine
whether the part from step 114 is still below a level for which
parent information is stored. If so, the process repeats steps
110-114 and then 108 again until the last part from step 114 is
no longer below any target levels. In the example, the process
reaches the top of the hierarchy after the first iteration of step
114. Once the last determined part is no longer below any
target levels, the entire path may be assembled based on: the
parent and path mappings in steps 104-106 or the path map-
ping from step 107 (for example, E1/F1 and E2/F1), and the
child (for example, D1:E1 and D2-D4:E2), parent (for
example, C1:D1-D4 and C2:D4), and path mappings in steps
110-114 (for example, A/B1/C1, A/B2/C1, A/B3/C2), which
may have been repeated multiple times for multiple target
rows. The process may then respond to the request in step 116
based on path(s) to the particular node(s) as assembled from
the parent mappings, child mappings, and path mappings.
The paths may be assembled by matching the endpoints of the
paths with the parent/child mappings. In the example, the
assembled paths may include A/B1/C1/*D1/E1/F1, A/B1/
C1/*D2/E2/F1, A/B1/C1/*D3/E2/F1, A/B1/C1/*D4/E2/F1,
A/B2/C1/*D1/E1/F1, A/B2/C1/*D2/E2/F1, A/B2/C1/*D3/
E2/F1, A/B2/C1/*D4/E2/F1; and A/B3/C2/D4/E2/F1. In the
example, branch points resulting from a single parent that is
mapped to multiple selected-level nodes, as indicated by the
parent mapping, have been starred.

In another embodiment that is not illustrated to retain the
simplicity of FIG. 1, the top-level could be a level for which
child information is stored but parent information is not
stored. In this case, the process would include a step for
determining that the part from step 106 or step 107 is below a
level for which child information is stored, and a child map-
ping would be used to link the path(s) from step 106 or step
107 to the parent node at a target level for which child infor-
mation is stored. Such a step may also be performed after
steps 108-114 if there are target levels below a target level at
the top of the hierarchy.

In the two examples from FIGS. 1-5, the path was found
between a root node, A, and a node specified in the request,
node D4 in the first example and node F1 in the second
example. In other examples, the request may specify a node of
interest other than the root node. In the first example, if the
request had requested a path from node B2 instead of node A,
then the process may include, instead of looking for paths
between A and C1 and A and C2 using database structure
308B, a step of looking for paths between B2 and C1 and B2
and C2 using database structure 308B. In the example,
because there is no path between B2 and C2, the resulting
path between B2 and D4 may be determined to be only
B2/C1/DA4.

Similarly, if the request in the second example had
requested a path from node B2 to F1, instead of from A to F1,
then the process may include, instead of looking for paths
between A and C1 and A and C2 using database structure
508B, a step of looking for paths between B2 and C1 and B2
and C2 using database structure 508B. In the example,
because there is no path between B2 and C2, the resulting
path between B2 and D4 may be determined to be A/B2/C1/
*DI1/E1/F1, A/B2/C1/*D2/E2/F1, A/B2/C1/*D3/E2/F1, and
A/B2/C1/*D4/E2/F1 (branch points starred).

In various embodiments shown, a path to a specified node
is determined using a bottom-up approach. In an alternate
embodiment, the path may be determined using a top-down
approach, starting with a root node or a highest-level specified

10

15

20

25

30

40

45

50

55

60

65

12

node and traversing the path mapping(s), parent mapping(s),
and optionally child mapping(s) downwardly toward a low-
est-level specified node.

Selecting a Level

A level, or group of nodes that share a common character-
istic, may selected based on information about the level such
as how many nodes are in the level. The information may be
compared to information about other levels of the hierarchy,
such as how many nodes are in the other levels. In one
embodiment, a level with a highest number of nodes is
selected for creation of the parent mappings and for exclusion
from the path mappings. In another embodiment, a leaf node
level is selected for the creation of the parent mappings and
for exclusion from the path mappings.

Inyet another embodiment, level(s) are selected based on a
threshold that may or may not be relative to other levels in the
hierarchy. For example, level(s) that contain over a threshold
number of nodes may be selected for inclusion in the parent
mappings and exclusion from the path mappings, and level(s)
that contain fewer than the threshold may be selected for
exclusion from the parent mappings and inclusion in the path
mappings. Multiple levels may be selected for inclusion in the
parent mappings and exclusion from the path mappings, and
the parent and child information retained for these levels may
be traversed from the lower portion(s) of the hierarchy to the
upper portion(s) of the hierarchy through the selected level(s)
that separate the different portions of the hierarchy. In this
example, the lower portion(s) of the hierarchy and the upper
portion(s) of the hierarchy include the nodes at the non-
selected levels.

Example of Checking Security Privileges Using the Stored
Mappings

In one example, a request is received from a client, such as
an application, inquiring about security privileges of a user.
The request may be to determine whether a particular user has
default privilege(s) or whether the particular user has speci-
fied privilege(s). The request may identify the particular user
and optionally the privilege(s) of concern. A path module may
evaluate the request by determining whether the identified
privilege(s) are within a path of that is connected to the
particular user in a privilege tree or privilege hierarchy.

Privilege tree(s) or a privilege hierarchy may include
level(s) of privileges that are connected to level(s) of roles,
and the level(s) of roles may be connected to level(s) of users.
The level of users may be at the top of the privilege tree(s) or
at the bottom of the privilege tree(s).

In one example, an application contains one application
user and 20 schemas, each schema having 50 tables. Different
roles are granted different privileges. In the example, the
privilege “SELECT” is granted to a role “REVIEWER,” the
privileges “UPDATE,” “DELETE,” and “INSERT” to a role
“WRITER,” and all privileges, including also “CREATE
ANY TABLE,” “ALTER ANY TABLE,” and “DROP ANY
TABLE” to atop-level “APPS” user. In the example, if it takes
4 bytes to store a user and a role, 2 bytes to store a system
privilege, and 5 bytes to store an object privilege (4 bytes for
the object identifier and 1 byte for the privilege identifier),
storing a path table that includes full paths between every
node may consume approximately 300 kilobytes (KB) in
storage space, which is significant especially if such space is
consumed in memory. In the example, storing parent links for
every node may consume approximately 44 KB in storage
space. Similarly, storing the parent links for only leaf nodes
and paths for only non-leaf nodes may consume approxi-
mately 44 KB in storage space.

In one embodiment, the path module may selecta privilege
hierarchy by locating a privilege hierarchy that includes a

US 9,330,116 B2

13

user specified in the request as a top-level node. In the
selected hierarchy, the path module may start at the nodes
corresponding to the identified privilege(s) and traverse the
privilege hierarchy upwardly using the parent and path map-
pings and optionally the child mapping to determine whether
the identified privilege(s) are connected to the user. In a
simple case, traversal of the privilege hierarchy may involve
a single lookup of a parent mapping and a single lookup of a
path mapping rather than a number of lookups that depends
on the depth of the hierarchy. If there is a path between a
respective privilege and the user, then the user may be said to
have that respective privilege.

In the APPS example above, finding the privilege grant
paths from APPS to SELECT for a particular user and a
particular table may cost 4T+4003T" in processor time if
traversing a hierarchy from node to node using parent links
for every node, where T is the time cost of one hash lookup
and T' is the time cost to compare two privileges. In the
example, a single lookup, with cost T, could be performed if
full paths were stored in a path table, but storing the full paths
may consume too much space. Finally, in the example, per-
forming a single lookup in the parent mapping and a single
lookup in the path mapping may cost 2T, and the parent
mapping for leaf nodes and path mapping for non-leaf nodes
may consume considerably less space than the full path table.

The path module may respond to the request by indicating
whether or not the particular user has the specified
privilege(s) based on the determined path(s) to a particular
node corresponding to the particular user.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 6 is a block diagram that illustrates a
computer system 600 upon which an embodiment of the
invention may be implemented. Computer system 600
includes a bus 602 or other communication mechanism for
communicating information, and a hardware processor 604
coupled with bus 602 for processing information. Hardware
processor 604 may be, for example, a general purpose micro-
processor.

Computer system 600 also includes a main memory 606,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 602 for storing information and
instructions to be executed by processor 604. Main memory
606 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 604. Such instructions, when stored
in non-transitory storage media accessible to processor 604,
render computer system 600 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

20

25

30

40

45

50

14

Computer system 600 further includes a read only memory
(ROM) 608 or other static storage device coupled to bus 602
for storing static information and instructions for processor
604. A storage device 610, such as a magnetic disk, optical
disk, or solid-state drive is provided and coupled to bus 602
for storing information and instructions.

Computer system 600 may be coupled via bus 602 to a
display 612, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 614, includ-
ing alphanumeric and other keys, is coupled to bus 602 for
communicating information and command selections to pro-
cessor 604. Another type of user input device is cursor control
616, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 604 and for controlling cursor movement
ondisplay 612. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.

Computer system 600 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 600 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 600 in response to processor
604 executing one or more sequences of one or more instruc-
tions contained in main memory 606. Such instructions may
be read into main memory 606 from another storage medium,
such as storage device 610. Execution of the sequences of
instructions contained in main memory 606 causes processor
604 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical
disks, magnetic disks, or solid-state drives, such as storage
device 610. Volatile media includes dynamic memory, such as
main memory 606. Common forms of storage media include,
for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage medium,
any physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, NVRAM, any
other memory chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
602. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 604
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 600 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 602. Bus 602 carries the data to main memory 606,

US 9,330,116 B2

15

from which processor 604 retrieves and executes the instruc-
tions. The instructions received by main memory 606 may
optionally be stored on storage device 610 either before or
after execution by processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface
618 provides a two-way data communication coupling to a
network link 620 that is connected to a local network 622. For
example, communication interface 618 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 618 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 618 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data equip-
ment operated by an Internet Service Provider (ISP) 626. ISP
626 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 628. Local network 622
and Internet 628 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital
data to and from computer system 600, are example forms of
transmission media.

Computer system 600 can send messages and receive data,
including program code, through the network(s), network
link 620 and communication interface 618. In the Internet
example, a server 630 might transmit a requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618.

The received code may be executed by processor 604 as it
is received, and/or stored in storage device 610, or other
non-volatile storage for later execution.

As used herein, the terms “first” “second,” “third,”
“fourth,” and “particular” are naming conventions that are
used to introduce and reference members of a set. Unless
otherwise expressly indicated, these terms are not intended to
provide any ordering information about the members in the
set. For example, a “first” member may or may not be at a
beginning of the set, and, unless otherwise specified, may or
may not be before a “second” member in the set, even if the set
is referred to as a “list” or some other ordered arrangement of
items.

To the extent that any steps are provided herein, an order
that the steps are written is not necessarily an order that the
steps are performed unless a later listed step is actually depen-
dent on an earlier listed step or unless a particular ordering is
expressly required. For example, a later listed step that uses or
stores A may be dependent on an earlier listed step that
receives or generates A but not necessarily on another earlier
listed step that also uses or stores A. Therefore, the later listed
step may be performed after one of the earlier listed steps but
not necessarily after both of the earlier listed steps.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The

10

15

20

25

30

35

40

45

50

55

60

65

16

sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A computer-implemented method comprising:

storing data comprising a hierarchy of nodes;

analyzing the stored data to generate stored mappings com-

prising:

a first mapping that maps selected-level nodes in the
hierarchy to parent nodes of the selected-level nodes,
and

a second mapping that maps a plurality of nodes other
than the selected-level nodes to a plurality of paths to
the plurality of nodes;

wherein the plurality of paths are within the hierarchy of
nodes and exclude paths to at least some of the
selected-level nodes in the hierarchy of nodes;

generating the stored mappings based on the first mapping

and the second mapping of the plurality of nodes;
storing an indication that the stored mappings represent
the hierarchy of nodes;

wherein the method is performed by one or more com-
puting devices.

2. The method of claim 1, wherein the first mapping is
stored in a first data structure, and the second mapping is
stored in a second data structure.

3. The method of claim 1, wherein the selected-level nodes
are leaf nodes in the hierarchy.

4. The method of claim 1, wherein the selected-level nodes
comprise non-leaf nodes in the hierarchy, wherein the stored
mappings further comprise a third mapping that maps child
nodes ofthe non-leafnodes to the non-leafnodes, and a fourth
mapping that maps descendant nodes of the child nodes to
paths between the descendant nodes and the child nodes.

5. A computer-implemented method comprising:

receiving a request that identifies, using a path expression

that identifies one or more paths, a particular node in a

hierarchy of nodes;

based on the path expression received in the request,
determining at least one first path to the particular
node using stored mappings at least in part by:

mapping at least one first node to at least one parent node
of'the at least one first node using a first mapping that
maps a first subset of the hierarchy to parent nodes of
the first subset, and

mapping the at least one parent node to at least one
second path, within the hierarchy of nodes, using a
second mapping that maps a second subset of the
hierarchy to second paths to the second subset;

wherein the second paths are within the hierarchy of
nodes and exclude paths to at least some nodes in the
first subset of the hierarchy of nodes;

responding to the request based at least in part on the at

least one first path to the particular node;

wherein the at least one first path is within the hierarchy of

nodes;

wherein the method is performed by one or more comput-

ing devices.

6. The method of claim 5, wherein the first mapping is
stored in a first data structure, and the second mapping is
stored in a second data structure.

7. The method of claim 5, wherein the first subset com-
prises nodes of a particular level in the hierarchy.

US 9,330,116 B2

17

8. The method of claim 5, wherein the first subset com-
prises leaf nodes in the hierarchy, wherein the at least one first
node is the particular node that is identified by the request,
and wherein the particular node is a leaf node.

9. The method of claim 5, wherein the first subset com-
prises non-leaf nodes in the hierarchy, further comprising:

mapping the particular node to at least one child node of the

at least one first node using a third mapping that maps
descendant nodes of child nodes of the first subset to the
child nodes;

mapping the at least one child node to the at least one first

node using a fourth mapping that maps the child nodes of
the first subset to the first subset.

10. The method of claim 5, wherein responding to the
request comprises storing the at least one first path on a
non-transitory computer-readable storage medium as at least
one expression.

11. The method of claim 5, wherein the request is received
from a client; wherein responding to the request comprises
sending a message to the client; and wherein the message
comprises at least one expression that identifies the at least
one first path.

12. The method of claim 5, wherein the request identifies
two or more nodes comprising the particular node and at least
one other node, and wherein responding to the request com-
prises indicating whether or not the at least one other node is
in the at least one first path to the particular node.

13. The method of claim 5, wherein the first subset com-
prises nodes that identify privileges, wherein the second sub-
set comprises nodes that identify roles and users, wherein the
atleast one first node is the particular node that is identified by
the request, wherein the particular node identifies a particular
privilege, and wherein responding to the request comprises
indicating whether or not a particular user has the particular
privilege based at least in part on the at least one first path to
the particular node.

14. One or more non-transitory computer-readable storage
media storing instructions which,

when executed, cause:
storing data comprising a hierarchy of nodes;
analyzing the stored data to generate stored mappings com-
prising:

a first mapping that maps selected-level nodes in the hier-

archy to parent nodes of the selected-level nodes, and

a second mapping that maps a plurality of nodes other than

the selected-level nodes to a plurality of paths to the
plurality of nodes;
wherein the plurality of paths are within the hierarchy of
nodes and exclude paths to at least some of the selected-level
nodes in the hierarchy of nodes;
generating the stored mappings based on the first mapping
and the second mapping of the plurality of nodes;

storing an indication that the stored mappings represent the

hierarchy of nodes.

15. The one or more non-transitory computer-readable
storage media of claim 14, wherein the first mapping is stored
in a first data structure, and the second mapping is stored in a
second data structure.

16. The one or more non-transitory computer-readable
storage media of claim 14, wherein the selected-level nodes
are leaf nodes in the hierarchy.

17. The one or more non-transitory computer-readable
storage media of claim 14, wherein the selected-level nodes
comprise non-leaf nodes in the hierarchy, wherein the stored
mappings further comprise a third mapping that maps child
nodes ofthe non-leaf nodes to the non-leafnodes, and a fourth

15

20

25

30

35

40

45

50

60

65

18

mapping that maps descendant nodes of the child nodes to
paths between the descendant nodes and the child nodes.

18. One or more non-transitory computer-readable storage
media storing instructions which, when executed, cause:

receiving a request that identifies, using a path expression

that identifies one or more paths, a particular node in a
hierarchy of nodes;

based on the path expression received in the request, deter-

mining at least one first path to the particular node using

stored mappings at least in part by:

mapping at least one first node to at least one parent node
of'the at least one first node using a first mapping that
maps a first subset of the hierarchy to parent nodes of
the first subset, and

mapping the at least one parent node to at least one
second path, within the hierarchy of nodes, using a
second mapping that maps a second subset of the
hierarchy to second paths to the second subset;

wherein the second paths are within the hierarchy of
nodes and exclude paths to at least some nodes in the
first subset of the hierarchy of nodes;

responding to the request based at least in part on the at

least one first path to the particular node;

wherein the at least one first path is within the hierarchy of

nodes.

19. The one or more non-transitory computer-readable
storage media of claim 18, wherein the first mapping is stored
in a first data structure, and the second mapping is stored in a
second data structure.

20. The one or more non-transitory computer-readable
storage media of claim 18, wherein the first subset comprises
nodes of a particular level in the hierarchy.

21. The one or more non-transitory computer-readable
storage media of claim 18, wherein the first subset comprises
leaf nodes in the hierarchy, wherein the at least one first node
is the particular node that is identified by the request, and
wherein the particular node is a leaf node.

22. The one or more non-transitory computer-readable
storage media of claim 18, wherein the first subset comprises
non-leaf nodes in the hierarchy, wherein the instructions fur-
ther cause:

mapping the particular node to at least one child node of the

at least one first node using a third mapping that maps
descendant nodes of child nodes of the first subset to the
child nodes;

mapping the at least one child node to the at least one first

node using a fourth mapping that maps the child nodes of
the first subset to the first subset.

23. The one or more non-transitory computer-readable
storage media of claim 18, wherein responding to the request
comprises storing the at least one first path on a non-transitory
computer-readable storage medium as at least one expres-
sion.

24. The one or more non-transitory computer-readable
storage media of claim 18, wherein the request is received
from a client; wherein responding to the request comprises
sending a message to the client; and wherein the message
comprises at least one expression that identifies the at least
one first path.

25. The one or more non-transitory computer-readable
storage media of claim 18, wherein the request identifies two
or more nodes comprising the particular node and at least one
other node, and wherein responding to the request comprises
indicating whether or not the at least one other node is in the
at least one first path to the particular node.

26. The one or more non-transitory computer-readable
storage media of claim 18, wherein the first subset comprises

US 9,330,116 B2

19

nodes that identify privileges, wherein the second subset
comprises nodes that identify roles and users, wherein the at
least one first node is the particular node that is identified by
the request, wherein the particular node identifies a particular
privilege, and wherein responding to the request comprises
indicating whether or not a particular user has the particular
privilege based at least in part on the at least one first path to
the particular node.

5

20

